Particle Gibbs for Infinite Hidden Markov Models
نویسندگان
چکیده
Infinite Hidden Markov Models (iHMM’s) are an attractive, nonparametric generalization of the classical Hidden Markov Model which can automatically infer the number of hidden states in the system. However, due to the infinite-dimensional nature of the transition dynamics, performing inference in the iHMM is difficult. In this paper, we present an infinite-state Particle Gibbs (PG) algorithm to resample state trajectories for the iHMM. The proposed algorithm uses an efficient proposal optimized for iHMMs and leverages ancestor sampling to improve the mixing of the standard PG algorithm. Our algorithm demonstrates significant convergence improvements on synthetic and real world data sets.
منابع مشابه
Max-Margin Infinite Hidden Markov Models
Infinite hidden Markov models (iHMMs) are nonparametric Bayesian extensions of hidden Markov models (HMMs) with an infinite number of states. Though flexible in describing sequential data, the generative formulation of iHMMs could limit their discriminative ability in sequential prediction tasks. Our paper introduces maxmargin infinite HMMs (M2iHMMs), new infinite HMMs that explore the max-marg...
متن کاملN/v-limit for Stochastic Dynamics in Continuous Particle Systems
We provide an N/V -limit for the infinite particle, infinite volume stochastic dynamics associated with Gibbs states in continuous particle systems on R, d ≥ 1. Starting point is an N-particle stochastic dynamic with singular interaction and reflecting boundary condition in a subset Λ ⊂ R with finite volume (Lebesgue measure) V = |Λ| < ∞. The aim is to approximate the infinite particle, infinit...
متن کاملInfinite Hierarchical Hidden Markov Models
In this paper we present the Infinite Hierarchical Hidden Markov Model (IHHMM), a nonparametric generalization of Hierarchical Hidden Markov Models (HHMMs). HHMMs have been used for modeling sequential data in applications such as speech recognition, detecting topic transitions in video and extracting information from text. The IHHMM provides more flexible modeling of sequential data by allowin...
متن کاملInfinite Hidden Semi-Markov Modulated Interaction Point Process
The correlation between events is ubiquitous and important for temporal events modelling. In many cases, the correlation exists between not only events’ emitted observations, but also their arrival times. State space models (e.g., hidden Markov model) and stochastic interaction point process models (e.g., Hawkes process) have been studied extensively yet separately for the two types of correlat...
متن کاملLearning Infinite Hidden Relational Models
Relational learning analyzes the probabilistic constraints between the attributes of entities and relationships. We extend the expressiveness of relational models by introducing for each entity (or object) an infinite-state latent variable as part of a Dirichlet process (DP) mixture model. It can be viewed as a relational generalization of hidden Markov random field. The information propagates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015